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A thermal lattice Boltzmann model for a van der Waals fluid is proposed. In the continuum, the model
reproduces at second order of a Chapman-Enskog expansion, the theory recently introduced by A. Onuki
�Phys. Rev. Lett. 94, 054501 �2005��. Phase separation has been studied in a system quenched by contact with
external walls. Pressure waves favor the thermalization of the system at initial times and the temperature, soon
with respect to typical times of phase separation, becomes homogeneous in the bulk. Alternate layers of liquid
and vapor form on the walls and disappear at late times.
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I. INTRODUCTION

In fluid systems the coupling between hydrodynamics and
thermodynamics produces a variety of complex effects of
fundamental and technological importance �1�. An example
is the piston effect consisting of the speeding up of the ther-
mal equilibration of a near-critical fluid warmed by external
walls �2,3�. This is due to pressure waves created by thermal
expansion near the walls. In phase transitions, heat transport
and thermal gradients, often neglected, can be quite relevant
�4,5�. When a fluid is quenched from a temperature above the
critical point into a coexistence region, the temperature jump
is generally assumed instantaneous in all of the system, and
most of the theories are based on isothermal evolution �6�.
However, in realistic situations, the system is quenched by
contact with colder external walls. The temperature of the
bulk does not set immediately at the value of the walls and
this can influence the phase separation. Simulations are gen-
erally useful for analyzing these phenomena, but a full ther-
mohydrodynamic study has been so far not considered.

An efficient approach to numerical simulations of fluids,
which has been developed in the last years, is based on the
so-called lattice Boltzmann method �LBM� �7�. A set of dis-
tribution functions representing densities of particles moving
along fixed lattice directions evolve following Boltzmann
equations with collision terms linearized in a single relax-
ation time approximation �8�. Conservation laws and proper
choice of equilibrium distribution functions in the collision
terms ensure that the correct hydrodynamic equations are
recovered in the continuum limit. LBM has been applied to
study single fluids, dynamics and phase ordering in multi-
component and complex fluids �9�; the method can easily
handle complex geometries and is suitable for parallel imple-
mentation �7�.

In this paper, inspired by the Klimontovich approach to
kinetic theory for nonideal gases �10�, we introduce a lattice
Boltzmann scheme which allows to simulate the thermohy-
drodynamic equations for a multiphase fluid including inter-

face free-energy contributions. This is an example of LBM
able to correctly reproduce in the continuum, at second order
of a Chapman-Enskog expansion, the transport equations re-
cently established by Onuki �11�. We will study the phase
separation of a van der Waals fluid. Our results show that
thermalization occurs faster due to the “piston effect.” After
a very early stage of phase separation the temperature in the
bulk of the system can be considered homogeneous. Alter-
nate layers of liquid and vapor form close to the external
walls, but do not survive at late times.

LBM for thermal fluids has been so far only set up for
ideal fluids �12� or do not consider all terms present in con-
tinuum equations �13�. We define density, velocity, and tem-
perature as momenta of various orders of the same set of
particle distributions—see Eqs. �1�–�3�. In other models,
where the temperature results form a separate set of distribu-
tions, the energy equation reduces to a convection-diffusion
equation not including all the stress contributions �14�.
Moreover, the Prandtl number can be varied in our model,
and due to the large variability of this number in real sys-
tems, this is a major goal in LBM for nonideal fluids �12�.
We will use a finite difference lattice Boltzmann method
�FDLBM� �15�, where the relationship c=�s /�t among the
lattice speed c and the space and time steps �s and �t are no
longer considered. In thermal LBM, for each direction, dif-
ferent distribution functions are introduced moving with dif-
ferent speeds and FDLBM allows to choose the more conve-
nient discrete velocity sets �16�. In addition, FDLBM enables
to use different discretization schemes. This is useful for im-
proving numerical stability and when nonuniform grids or
mixtures with different masses are considered.

II. THE MODEL

We generalize the two-dimensional lattice Boltzmann
model introduced in Ref. �16�. There are four sets of veloci-
ties defined by �e0=0 ,eki=�cos�i−1� �

4 , sin�i−1� �
4
�ck� with
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k=1, . . . ,4 ; i=1, . . . ,8. The values of the speeds ck may be
determined by asking for the largest temperature interval
centered around Tc=1 �the critical temperature in our model�
where the equilibrium distribution functions fki

eq are positive
when the fluid velocity u is negligible �16�. We found the
values �c1 ,c2 ,c3 ,c4�= �1.00,1.90,2.90,4.30� within the tem-
perature range �0.5,1.5�.

The local density n, velocity u, and temperature T are
determined from the distribution functions fki, defined in
each node of the lattice, as

n = �
ki

fki, �1�

nu� = �
ki

fkieki�, �2�

n�T +
u2

2
	 =

1

2�
ki

fkick
2. �3�

The functions fki evolve according to the equations

�t fki + eki���fki = −
1

�
�fki − fki

eq� + Iki, �4�

where the first term on the right-hand side is the collision
operator with relaxation time � �8�. The �fki

eq�’s are derived
from the Maxwell distribution retaining up to fourth-order
terms of flow velocity �16�. They are required to fulfill Eqs.
�1�–�3� in order to guarantee mass, momentum, and energy
conservation. We solve numerically Eq. �4� on a lattice of
size L�W by using the forward time stepping rule for �t fki
and a second-order finite difference scheme for the convec-
tive term eki���fki based on flux limiters �17� which reduce
unphysical numerical oscillations of the density. We adopted
the monitorized central difference scheme which proved to
be effective in reducing spurious numerical terms in the case
of isothermal nonideal fluids �18�. The systems investigated
are limited by rigid walls at the left-hand and right-hand
sides, kept at fixed temperature. Diffuse reflection boundary
conditions �19� are implemented in a version capable to im-
pose the wall temperature allowing free evolution of the fluid
density �20�.

The extra term Iki accounts for interparticle forces and is
the main contribution of our model. It has a structure similar
to the one introduced by Klimontovich �10� in kinetic theo-
ries for nonideal gases, that is

Iki = − �A + B��eki� − u�� + �C + Cq��eki� − u��2�fki
eq. �5�

The introduction of Iki allows to recover mass, momentum,
and energy equations of a van der Waals fluid �11�,

�tn = − ���nu�� , �6�

�t�nu�� = − ���nu�u�� − ������ − 	��� , �7�

�teT = − ���eTu� + ���� − 	���u�� + ���
T��T� , �8�

where ���= pw���+��� is the nonviscous stress; pw= 3nT
3−n

− 9
8n2 is the van der Waals pressure with a critical point

at Tc=nc=1, and ���=M��n��n−M�n�2n+ 
�n
2
2

����

−�nT��n��
� M

T
����� is the contribution to the pressure tensor

depending on density gradients. 	��=���u�+��u�

−��u�����+���u���� is the dissipative stress tensor with
shear and bulk viscosities  and � �21�. The total energy
density is eT=nT− 9

8n2+K 
�n
2
2 +nu2� 2, and the expression

M =K+HT �K and H constants� allows a dependence of the
surface tension on temperature.

We determine the contributions due to the term Iki to the
mass, momentum, and energy equations which read as

�
ki

Iki = A + 2�C + Cq�T , �9�

�
ki

Ikieki� = − �nu��A + 2�C + Cq�T� + nTB�� , �10�

1

2�
ki

Ikick
2 = − �n�T +

u2

2
	�A + 2�C + Cq�T� + 2nT2�C + Cq�

+ nTB�u�� , �11�

respectively. Starting from Eq. �4�, we perform the
Chapman-Enskog expansion with respect to the Knudsen
number Kn=c1� /L�s �7� to obtain the continuum equations.
We fix the coefficients in �5� in order to recover Eqs. �6�–�8�
by using Eqs. �9�–�11� which give the nonideal contributions.

By using the conservation laws and the structure of lattice
vectors �eki�, we find

A = − 2�C + Cq�T , �12�

B� =
1

nT
����pw − nT� + ����� − ������u��� , �13�

C =
1

2nT2�pw − nT���u� + �����u� − ����u����u�

+
9

8
n2��u� + K�−

1

2
���n����n����u�� − n���n������u��

− ���n����u�����n�	� , �14�

Cq =
1

2nT2���2qnT���T�� . �15�

Equations �6�–�8� are obtained at the second order in Kn
without extra spurious terms. The term Cq allows to tune the
heat conductivity 
T independently from the dynamic viscos-
ity . Indeed, we obtain =nT�, 
T=2nT��−q�, so that the
Prandtl number Pr= /
T= �

2��−q� can be varied by changing

the parameter q keeping � fixed. All of the terms �12�–�15�
are readily computed in the code since they depend on the
quantities n, u, and T which are available at each time step.
Derivatives are computed by using second-order finite differ-
ence schemes. The CPU time needed for our model is ap-
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proximatively 33% larger than that for the ideal gas model
where the term Iki is switched off.

III. NUMERICAL RESULTS

In order to validate our algorithm we first checked nu-
merically the previous expression for 
T. We considered the
fluid in the single phase region and initialized the system
with a temperature wave around T=0.90 at n=0.1 and walls
at temperature TW=0.90. Since Eq. �8� reduces to a simple
diffusion equation if u=0, at each iteration of these simula-
tions the fluid velocity was set to zero after the measure of T
and the value of 
T was deduced from the decay of the wave.
We kept � fixed at 0.0001 and q was varied in order to
change Pr in the range �0.005;5�. Numerical results shown in
Fig. 1 agree very well with theoretical predictions 
T
=2nT��−q�. We did not find any significant dependence on
the space step �s since results are almost identical for differ-
ent choices of �s.

We then investigated how the equilibrium between liquid
and vapor is reproduced in our model. Densities of the co-
existing phases were numerically computed at different tem-
peratures and compared to the theoretical values estimated
by Maxwell construction. For T�0.85, results are very close
to the theoretical curve. Below this value, deviations appear
which become larger when reducing T. An equilibrium den-
sity profile separating the two phases is shown in Fig. 2.

We used L=150, W=10, �s=0.01, �t=10−5, �=10−4, K
=10−6, H=0, and walls kept at temperature TW=0.90. A well-
known problem in LBM is the presence of spurious veloci-
ties at interfaces �18�. In the present thermal model, these
velocities act as local sources of heat which must be dissi-

pated through the system. As a consequence, the bulk tem-
perature is slightly larger than the one fixed on the walls by
less than 5%.

We applied our LBM to study the phase separation of a
van der Waals fluid, initially at T�Tc with density n at each
lattice node randomly chosen in the interval �1.042
−0.104;1.042+0.104�, put in contact with colder walls at
TW=0.90. The value n=1.042 would give symmetric phase
separation for an isothermal process with fully periodic
boundaries. We used L=512, W=256, �s=1/256, �t=10−5,
�=10−3, q=−0.004, K=10−6, H=0. Thermal contraction
close to the walls generates pressure waves which propagate
as shown in Fig. 3. The waves move from the walls �see the
figures at t=0.2 and t=0.6� towards the center of the system.
After they come in contact, the waves separate generating a
lower pressure between them �t=1.2�. The two waves are
later reflected from the walls; the process repeats and can be
clearly observed in our simulations for three times until t
�3. This mechanism, also known as the piston effect, makes
the thermalization of the system much faster than if only due
to diffusion in the sense that in the bulk of the system, the
temperature becomes very soon homogeneous with only a
jump close to the walls. Our simulations show for the first
time how it acts during phase separation �22�, confirming the
picture discussed in Ref. �1�.

When the waves become negligible, temperature profiles
like that of Fig. 4 are observed. Then, domains of the two
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FIG. 4. Plot of the temperature profile across the system along a
middle line at time t=4.
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FIG. 1. Plot of the heat conductivity 
T as a function of �−q for
�s=0.01��� ,0.002���. The parameter � is fixed at value 10−4 and q
is varied in the range �−0.009 90;0.000 09�. The dashed line corre-
sponds to the analytical expression 
T=2nT��−q�.

0.5

1

1.5

0 0.5 1 1.5
x

n

FIG. 2. Plot of density profile normal to two flat interfaces for a
van der Waals fluid.

t = 0.2

t = 0.8

t = 0.6

t = 1.2

FIG. 3. Contour plots of pressure pw at initial times of phase
separation. Cold walls are placed on the left-hand and right-hand
sides. Gray scaling from white→black corresponds to maximum
pw→minimum pw.
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phases start to form as shown in Fig. 5 at t=3. In the bulk the
usual symmetric spinodal decomposition pattern can be ob-
served, while layers of the denser phase condense on the
walls. Actually, the liquid layer is followed by alternate lay-
ers of the two phases which, in all the cases examined with
different � and q, disappear at later times �see Fig. 5 at t=4�.
In previous simulations the alternate layers were observed to

survive with time, but in those studies the temperature fol-
lowed a prescribed time dependence �5� or was not properly
coupled through hydrodynamic equations to the other state
variables �23�. Moreover, we measured the growth of the
width of the liquid layers on the walls and found a power law
compatible with t1/2.

Due to deposition of liquid on the walls �see Fig. 5 at t
=20�, the late time density patterns exhibit in the bulk the
typical features of asymmetric quenching with the vapor
playing the role of the majority phase. Liquid droplets be-
come spherical and larger and larger; we did not find any
dependence of growth rates on the viscosity and thermal con-
ductivity. In the meantime, the temperature in the bulk de-
creases towards the wall values, slowly if compared with the
growth of the droplet size. We could not appreciate changes
in growth rate due to temperature variations in this last re-
gime. Such patterns have been also observed in experiments
for near-critical fluids �3,11�.

IV. CONCLUSIONS

In conclusion, we have shown that LBM can be used to
study the dynamics of van der Waals fluids dealing consis-
tently with the thermodynamics of the systems. We studied
the phase separation of a system put in contact with colder
external walls showing the influence of thermal exchanges
on the domain pattern evolution. Pressure waves at initial
times favor the thermalization. We hope that our algorithm
can be used to study other thermal effects in multiphase flu-
ids. Improvements in the algorithm with further reduction of
spurious velocities would allow to study systems subject to
larger thermal gradients.
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